replete$69323$ - definizione. Che cos'è replete$69323$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è replete$69323$ - definizione

A SUBCATEGORY THAT DOES NOT DISCRIMINATE BETWEEN ISOMORPHIC OBJECTS IN THE SUPERCATEGORY
Isomorphism-closed; Replete subcategory

Isomorphism-closed subcategory         
In category theory, a branch of mathematics, a subcategory \mathcal{A} of a category \mathcal{B} is said to be isomorphism closed or replete if every \mathcal{B}-isomorphism h:A\to B with A\in\mathcal{A} belongs to \mathcal{A}. This implies that both B and h^{-1}:B\to A belong to \mathcal{A} as well.
replete         
  • Honeypot ants compared to a human hand. The dark dorsal [[sclerite]]s are widely separated by the stretched arthrodial membrane of the inflated abdomen of each replete.
ANTS WHICH HAVE SPECIALIZED WORKERS THAT ARE GORGED WITH FOOD TO THE POINT THAT THEIR ABDOMENS SWELL ENORMOUSLY
Plerergate; Honey Ant; Honeyant; Replete; Honeypot ants; Honey ant; Honey pot ant; Repletes; Camponotus inflatus
a.
Full, abounding, charged, exuberant, fraught, well-stocked, well provided, completely full, filled again.
replete         
  • Honeypot ants compared to a human hand. The dark dorsal [[sclerite]]s are widely separated by the stretched arthrodial membrane of the inflated abdomen of each replete.
ANTS WHICH HAVE SPECIALIZED WORKERS THAT ARE GORGED WITH FOOD TO THE POINT THAT THEIR ABDOMENS SWELL ENORMOUSLY
Plerergate; Honey Ant; Honeyant; Replete; Honeypot ants; Honey ant; Honey pot ant; Repletes; Camponotus inflatus
adj. (cannot stand alone) replete with

Wikipedia

Isomorphism-closed subcategory

In category theory, a branch of mathematics, a subcategory A {\displaystyle {\mathcal {A}}} of a category B {\displaystyle {\mathcal {B}}} is said to be isomorphism closed or replete if every B {\displaystyle {\mathcal {B}}} -isomorphism h : A B {\displaystyle h:A\to B} with A A {\displaystyle A\in {\mathcal {A}}} belongs to A . {\displaystyle {\mathcal {A}}.} This implies that both B {\displaystyle B} and h 1 : B A {\displaystyle h^{-1}:B\to A} belong to A {\displaystyle {\mathcal {A}}} as well.

A subcategory that is isomorphism closed and full is called strictly full. In the case of full subcategories it is sufficient to check that every B {\displaystyle {\mathcal {B}}} -object that is isomorphic to an A {\displaystyle {\mathcal {A}}} -object is also an A {\displaystyle {\mathcal {A}}} -object.

This condition is very natural. For example, in the category of topological spaces one usually studies properties that are invariant under homeomorphisms—so-called topological properties. Every topological property corresponds to a strictly full subcategory of T o p . {\displaystyle \mathbf {Top} .}